„Prozessoptimierung“ in der Zelle: Cleveres Feedback-System reguliert Immunantworten

Dass Immunantworten nicht aus dem Ruder laufen, ist einem neu entdeckten Rückkoppelungsmechanismus des Körpers zu verdanken. Dieser wirkt auf der Ebene bestimmter Gene und verknüpft deren Inaktivierung mit dem Fortschreiten des Ablesens dieser Gene. Dieser clevere Mechanismus wurde als Teil eines Projekts des Wissenschaftsfonds FWF entdeckt und vor Kurzem im Fachmagazin Molecular and Cellular Biology publiziert. Diese Erkenntnisse aus der Grundlagenforschung bieten einen völlig neuen Ansatzpunkt für zukünftige Therapien, die auf eine Kontrolle des Immunsystems abzielen.

Dringen Mikroorganismen in den Körper ein, werden Zytokine (Proteine, die das Verhalten von Zellen beeinflussen) freigesetzt, die sofort Abwehrmaßnahmen initiieren. Diese bestehen auch im Aktivieren und Ablesen bestimmter Gene und damit in der Produktion von Abwehrproteinen. Dabei ist es wichtig, dass der Körper nicht zuviel dieser Proteine produziert, denn das würde den eigenen Körper schädigen. Daher wird deren Herstellung rechtzeitig gedrosselt. Dass dies passiert, ist seit Langem bekannt. Wie es passiert, erst seit Kurzem – dank der Arbeiten einer Gruppe rund um den Immunbiologen Pavel Kovarik. In einem vom Wissenschaftsfonds FWF unterstützten Projekt an den Max. F. Perutz Laboratories konnten die Wissenschafterinnen und Wissenschafter zeigen, wie diese Drosselung erfolgt.

Gebremst
Zum besseren Verständnis des soeben entschlüsselten Mechanismus ist es wichtig zu wissen, dass Zytokine auf die sogenannte STAT-Familie von Proteinen wirken, die als Transkriptionsfaktoren agieren – also als Faktoren, die an der DNA das Ablesen von Genen und damit die Produktion von Proteinen initiieren. Zur Erfüllung dieser Funktion müssen die STATs an spezielle Sequenzen der DNA binden, und es ist genau diese Bindung, die durch Zytokine gefördert wird. Bei seiner Arbeit konzentrierte sich das Team um Kovarik zunächst auf das gegen virale Infektionen produzierte Zytokin Interferon und die Regulation der Aktivität von STAT1. Die Untersuchungen führten zur Entdeckung eines neuen und verblüffend wirksamen Mechanismus. Das Team konnte zeigen, dass mit Fortschreiten des von STAT1 initiierten Ablesens eines Gens STAT1 zunehmend von der DNA gelöst wird. Kovarik dazu: „Dieser bisher unbekannte Feedback-Mechanismus setzt sehr frühzeitig im Prozess der Herstellung von Abwehrproteinen an und erlaubt somit eine rasche Regulierung einer Immunantwort.“ In der Folge konnte das Projekt-Team den gleichen Regulierungsvorgang auch für STAT2 und STAT3 beobachten, was ein Hinweis auf die evolutionär frühzeitige Verbreitung dieses Mechanismus ist.

Klares Ergebnis
In der Folge konnte Pavel Kovarik auch zeigen, dass ein anderer – bereits bekannter – Prozess der Inaktivierung von STAT1 nicht ausschlaggebend für die Regulierung der Immunantwort ist. Dieser andere Vorgang beruht auf einer chemischen Modifikation der STAT-Proteine, bei der Phosphatgruppen entfernt werden, was die Inaktivierung von STAT1 zur Folge hat. „Obwohl diese Inaktivierung tatsächlich eine weitere Produktion von Abwehrproteinen verhindert, so ist die von uns entdeckte Loslösung der STAT-Proteine von der DNA der wesentlich wirksamere und damit entscheidende Regulierungsschritt“, erläutert Kovarik die Ergebnisse seines Projekts.

Strukturwandel
Obwohl es derzeit nicht bekannt ist, wie die Information des fortschreitenden Ablesens der DNA an das DNA-gebundene STAT1 übermittelt wird – und damit die Loslösung initiiert wird –, hat Kovarik eine klare Vorstellung, wie dies erfolgen könnte: „Modellberechnungen und die Ergebnisse anderer Arbeiten legen nahe, dass das Fortschreiten des Ablesens der Gene sich auf die Struktur der DNA auswirkt. Diese Strukturveränderung kann dazu führen, dass STAT1 sich von der DNA löst.“

Angriffspunkt
Der nun entdeckte Mechanismus zur Regulierung von Immunantworten bietet völlig neue Möglichkeiten für therapeutische Interventionen. Denn sowohl ein zu schwach reagierendes als auch ein überreagierendes Immunsystem kann zu Problemen führen –, schwerwiegende Infektionen oder Autoimmunerkrankungen können die Folge sein. Gezielte Eingriffe in den im Rahmen dieses FWF-Projekts entdeckten Mechanismus könnten dem entgegenwirken und so die natürliche Immunantwort des Körpers optimal einsetzen.

Zur Person
Pavel Kovarik ist Professor für Immunbiologie am Department für Mikrobiologie, Immunbiologie und Genetik der Universität Wien. An den Max F. Perutz Laboratories in Wien leitet er die Gruppe „Signaling and gene expression in inflammation“. Dort befasst er sich mit Fragen sowohl zur Regulierung von Immunantworten als auch zu Immunerkrankungen.

Publikationen:
Promoter Occupancy of STAT1 in Interferon Responses Is Regulated by Processive Transcription:
I. Wiesauer, C. Gaumannmüller, I. Steinparzer, B. Strobl and P. Kovarik. Molecular and Cellular Biology (MCB), 2015, 35:716 –727. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301719/

CDK8 Kinase Phosphorylates Transcription Factor STAT1 to Selectively Regulate the Interferon Response:
J. Bancerek, Z. C. Poss, I. Steinparzer, V. Sedlyarov, T. Pfaffenwimmer, I. Mikulic, L. Dölken, B. Strobl, M. Müller, D. J. Taatjes, P. Kovarik. Immunity, 2013. http://dx.doi.org/10.1016/j.immuni.2012.10.017

Bild und Text ab Montag, 17. August 2015, ab 10.00 Uhr MESZ verfügbar unter: http://scilog.fwf.ac.at

Wissenschaftlicher Kontakt:
Prof. Pavel Kovarik
Universität Wien
Max F. Perutz Laboratories
Dr. Bohr-Gasse 9
1030 Wien
T +43 / 1 / 4277 – 54608
E pavel.kovarik@univie.ac.at
W http://www.mfpl.ac.at

Der Wissenschaftsfonds FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 – 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Redaktion & Aussendung:
PR&D – Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at